Which motor cortical region best predicts imagined movement?

نویسندگان

  • Chang-hyun Park
  • Won Hyuk Chang
  • Minji Lee
  • Gyu Hyun Kwon
  • Laehyun Kim
  • Sung Tae Kim
  • Yun-Hee Kim
چکیده

In brain-computer interfacing (BCI), motor imagery is used to provide a gateway to an effector action or behavior. However, in contrast to the main functional role of the primary motor cortex (M1) in motor execution, the M1's involvement in motor imagery has been debated, while the roles of secondary motor areas such as the premotor cortex (PMC) and supplementary motor area (SMA) in motor imagery have been proposed. We examined which motor cortical region had the greatest predictive ability for imagined movement among the primary and secondary motor areas. For two modes of motor performance, executed movement and imagined movement, in 12 healthy subjects who performed two types of motor task, hand grasping and hand rotation, we used the multivariate Bayes method to compare predictive ability between the primary and secondary motor areas (M1, PMC, and SMA) contralateral to the moved hand. With the distributed representation of activation, executed movement was best predicted from the M1 while imagined movement from the SMA, among the three motor cortical regions, in both types of motor task. In addition, the most predictive information about the distinction between executed movement and imagined movement was contained in the M1. The greater predictive ability of the SMA for imagined movement suggests its functional role that could be applied to motor imagery-based BCI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study.

The neural (blood oxygenation level dependent) correlates of executed and imagined finger sequences, both unimanual and bimanual, were studied in adult right-handed volunteers using functional magnetic resonance imaging (fMRI) of the entire brain. The finger to thumb opposition tasks each consisted of three conditions, two unimanual and one bimanual. Each experimental condition consisted of ove...

متن کامل

Decoding and cortical source localization for intended movement direction with MEG.

Magnetoencephalography (MEG) enables a noninvasive interface with the brain that is potentially capable of providing movement-related information similar to that obtained using more invasive neural recording techniques. Previous studies have shown that movement direction can be decoded from multichannel MEG signals recorded in humans performing wrist movements. We studied whether this informati...

متن کامل

Induction of Long-term Depression-like Plasticity by Pairings of Motor Imagination and Peripheral Electrical Stimulation

Long-term depression (LTD) and long-term potentiation (LTP)-like plasticity are models of synaptic plasticity which have been associated with memory and learning. The induction of LTD and LTP-like plasticity, using different stimulation protocols, has been proposed as a means of addressing abnormalities in cortical excitability associated with conditions such as focal hand dystonia and stroke. ...

متن کامل

Perceptual integration of illusory and imagined kinesthetic images.

It is generally agreed that motor imagery involves kinesthetic sensations especially as far as first-person imagery is concerned. It was proposed to determine the extent to which motor imagery and vibration-induced illusory sensations of movement are integrated perceptually. Imagined and illusory hand movements were evoked both separately and in various combinations in 12 volunteers. After each...

متن کامل

Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography.

Positron emission tomography was used to compare the functional anatomy of visual imagination and generation of movement. Subjects were asked to generate visual images of their finger movement in response to a preparatory signal. Four conditions were tested: in two, no actual movement was required; in the other two, a second signal prompted the subjects to execute the imagined movement. Which m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2015